An integrated brain-machine interface platform with thousands of channels (Neuralink White Paper)
Publication/Creation Date
July 16 2019Description
Abstract:
Brain-machine interfaces (BMIs) hold promise for the restoration of sensory and motor function and the treatment of neurological disorders, but clinical BMIs have not yet been widely adopted, in part because modest channel counts have limited their potential. In this white paper, we describe Neuralink’s first steps toward a scalable high-bandwidth BMI system. We have built arrays of small and flexible electrode “threads”, with as many as 3,072 electrodes per array distributed across 96 threads. We have also built a neurosurgical robot capable of inserting six threads (192 electrodes) per minute. Each thread can be individually inserted into the brain with micron precision for avoidance of surface vasculature and targeting specific brain regions. The electrode array is packaged into a small implantable device that contains custom chips for low-power on-board amplification and digitization: the package for 3,072 channels occupies less than (23 × 18.5 × 2) mm3 . A single USB-C cable provides full-bandwidth data streaming from the device, recording from all channels simultaneously. This system has achieved a spiking yield of up to 85.5 % in chronically implanted electrodes. Neuralink’s approach to BMI has unprecedented packaging density and scalability in a clinically relevant package.Technology Keywords
Brain-Computer Interface (BCI),
Brain-Machine Interface (BMI),
Neural Interfaces,
Neurosurgical Robots,
Robotics,
Neural Lace,
Electrodes,
Microelectrode Arrays,
High-Bandwidth BMI Systems,
Flexible Threads,
Polymer Probes,
Implantable Chips,
Algorithms ,
Artificial Intelligence (AI),
Application Specific Integrated Circuits (ASIC),
Sensors,
Digital Telepathy,
Brain Implanted AISource
https://assets.documentcloud.org/documents/6204648/Neuralink-White-Paper.pdf
Date archived
July 17 2019Last edited
May 18 2020