Implantable brain electronics is here

Publication/Creation Date
June 10 2015
Charles Lieber (creator)
Harvard University (contributor)
National Center For Nanoscience And Technology (contributor)
Persuasive Intent
Discursive Type
Seamless and minimally invasive three-dimensional interpenetration of electronics within artificial or natural structures could allow for continuous monitoring and manipulation of their properties. Flexible electronics provide a means for conforming electronics to non-planar surfaces, yet targeted delivery of flexible electronics to internal regions remains difficult. Here, we overcome this challenge by demonstrating the syringe injection (and subsequent unfolding) of sub-micrometre-thick, centimetre-scale microporous mesh electronics through needles with a diameter as small as 100 μm. Our results show that electronic components can be injected into man-made and biological cavities, as well as dense gels and tissue, with >90% device yield. We demonstrate several applications of syringe-injectable electronics as a general approach for interpenetrating flexible electronics with three-dimensional structures, including (1) monitoring internal mechanical strains in polymer cavities, (2) tight integration and low chronic immunoreactivity with several distinct regions of the brain, and (3) in vivo multiplexed neural recording. Moreover, syringe injection enables the delivery of flexible electronics through a rigid shell, the delivery of large-volume flexible electronics that can fill internal cavities, and co-injection of electronics with other materials into host structures, opening up unique applications for flexible electronics.
HCI Platform
Relation to Body
Related Body Part
Marketing Keywords

Date archived
May 3 2016
Last edited
July 5 2021
How to cite this entry
Charles Lieber. (June 10 2015). "Implantable brain electronics is here". AcceleratingIntelligence.News. Kurzweil Network. Fabric of Digital Life.